Sea otters as apex predators in Southeast Alaska

Ginny Eckert¹, Sean Larson¹, Zac Hoyt¹, Verena Gill², Sunny Rice¹

¹School of Fisheries & Ocean Sciences, UAF & ²USFWS

Northern Sea Otter Stocks in Alaska

Range Expansion

Preliminary diet composition 2010-2012 Commercially important species as a function of sea otter colonization

Preliminary diet composition 2010-2012 Commercially important species as a function of sea otter colonization

Preliminary diet composition 2010-2012 Non-commercially important species as a function of sea otter colonization

Sea otters greatly affect shellfish populations

Declines in sea cucumbers can be attributed to sea otters.

Commercially important species - a large proportion of the diet

Highly desired species – urchins & Dungeness crab – eaten first

Legal harvest of sea otters

Ecosystem Based Management

- 1. Sea otters were absent for hundreds of years.
- 2. Reintroduction & now 25,000
- 3. They greatly reduce shellfish populations
- 4. Need ecosystem-based management

Sea otter movement study

Fisheries affected in southern SE AK & exvessel value 2010-2011

Dungeness crab

Metacarcinus magister

Sea cucumber Parastichopus californicus

Red sea urchin Strongylocentrotus franciscanus

Geoduck clam

Panopea abrupta